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Abstract

Some optimization approach for solving the mixed discrete-continuous optimiza-
tion problem is proposed. The application of the proposed approach for structure
change systems is presented.
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Introduction

The purpose of this paper is to describe the application of adaptive random
search [1] for discrete-continuous optimization, in other words, the optimization
problem contains both continuous and discrete variables.

There are many diverse applications where the mathematical models are based
on discrete-continuous optimization. Note that the optimization of such models in
majority cases is difficult because of potential existence of multiple optimum in the
domain of the objective function. And so the most general methods for solving
discrete-continuous problems are global optimization methods, for example, the
genetic algorithms. Here we use the adaptive random search as the optimization
algorithm [1]. Note, that for the adaptive random search objective function
features are not essential and only the number of the objective function calculation
is significant.

We shall begin with the mathematical statement of the discrete-continuous
optimization problem.

Let Λ ⊂ Rn be the continuous set. Denote by S some discrete set. Define
the s ∈ S as a structure. So the discrete-continuous optimization problem can be
formulated as follows:

F (λ, s) → min
λ∈Λ,s∈S

. (1)

Suppose that the constraints for the discrete variables s ∈ S and continuous vari-
able λ ∈ Λ are included into function (1). We can do it because it is not so
significant for adaptive random search used.

Suppose furthermore that for any value of continuous variable λ there exists
an algorithm for finding the optimal in some sense structure s. In other words for
any value λ∗ ∈ Λ we can find the optimal value s∗ ∈ S.
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To find the optimum for the continuous variable λ we propose to use the random
search and to find the optimal (in some sense) structure s — greedy algorithms,
algorithms of dynamic programming and other discrete algorithms.

It is obvious, that problem (1) can be solved by using the combination of
random search and some discrete algorithm.

In the next part of this paper we will consider some applications of the described
approach for solving some discrete-continuous optimization problem.

Synthesis of a change structure systems

In this section, for the demonstration of the above-mentioned approach appli-
cation, we will solve the typical problem of synthesis the change structure sys-
tems(CSS) [2,3,4].

The change structure systems are ones whose tuning to the definite output
function is realizing by the discrete connection change between a functional ele-
ments, in other words, by change systems structure.

There are many applications of CSS, for example, multifunctional logical mod-
ules, a mechanical box change transmission, change structure microwave devices,
electrical filters and other radiotechnical apparatuses.

Further we will briefly describe the two-pole CSS theory [2] and will formulate
some synthesis problem. For better description of two-pole CSS theory see work [2].

Note that the above-mentioned approach can also be used for synthesis of
three-pole CSS, where the hypergraph theory [2,3,4] is used.

Define the CSS as the set of objects [2]:

Σ = 〈Γ, v, w〉, (2)

where:
— Γ = 〈Z, D + U〉 is a weighed structural graph of CSS, where:

– Z is a finite set of the graph Γ nodes (or CSS poles) ;
– D is a set of graph Γ arcs (or CSS functional elements);
– U is a set of graph Γ arcs (or CSS control elements for tuning to the

definite output function;
— v ∈ Z is an input node of graph Γ (or input pole of CSS) and w ∈ Z is an

output node of graph Γ (or an output pole of CSS).
Let ωi ∈ R be signal value on the i-th pole of CSS. Denote by λij the parameter

of a functional element inlcuding i and j poles, λij ∈ Λ ⊆ R, Λ = Λ01 ∪ Λ1∞.
Without loss of generality suppose that Λ01 ⊆ (0, 1) and Λ1∞ ⊆ (1,∞). Any
element q ∈ U matches a pair of poles such that by including a control element
of U , the signal value on the pole i, i.e. ωi, becomes equal to signal value on the
node j, i.e., ωj : ωi = ωj .

Let us denote:
— ΓD = 〈ZD, D〉, ZD = Z is a functional subgraph;
— ΓU = 〈ZU , U〉 is a control subgraph.
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Let R ⊂ U be a subset such that in the subgraph ΓDR = 〈ZDR, D + R〉 the
following unique path exists:

i1, i2, . . . , in, in, (3)

where i1 = v, in = w, ij ∈ Z n ≤ d, d = |D|. So path (3) determines some mode
of the change structure system Σ for the subset of control elements R.

The signal value for the output pole ωw for some subset R can be calculated
as follows:

yR = ωw = λi1i2λi2i3 . . . λln−1lnωv, R ⊂ U,

where λijij+1 = 1 provided that (ij , ij+1) ∈ U . Thus, the function

fR(λ) = λi1i2λi2i3λin−1in

is an output function for mode R.
Let G = 〈g1, g2, . . . , gl〉 be a given sequence of numbers in R, called an output

gamma and gi ∈ Gi = [gli, gri], i ∈ 1 : l, where gli and gri are left and right
bounds of gi.

Let for any i ∈ 1 : l exist Ri such that the value of the output function
fRi(λ

∗) ∈ Gi, λ∗ ∈ Λl.
Suppose that the function

Fg(λ) = max
i∈1:l

∣∣∣∣
fRi − gi

gi

∣∣∣∣ → min
λ

, (4)

is the performance criterion of realization of the given output gamma G.
Let all functional elements of Σ be renumerated from 1 to d. Let us construct

the following function:

Θ(λj) =
{

λj , 0 < λj < 1,
1/λj , 1 < λj < ∞.

(5)

Let
Λ01 = [λl, λr], Λ1∞ = [1/λr, 1/λl].

Let us construct the penalty function

Φλ = A

d∑

j=1

Φλj , (6)

where A is a sufficiently large number and

Φλj =
∣∣∣λl −Θ(λj)

∣∣∣ +
∣∣∣λr −Θ(λj)

∣∣∣ + (λl − λr). (7)

Thus, the problem of synthesis under consideration may be stated as follows.
Given:
– the gamma G = 〈g1, g2, . . . , gl〉,
– the domain Λ = [λl, λr] ∪ [1/λr, 1/λl],
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– the intervals {[gli, gri]|i ∈ 1 : l}.
Find:
– the functional graph ΓD = 〈ZD, D〉,
– the values of functional elements λij , such that:

– gli ≤ yi(λ) ≤ gri, i ∈ 1 : l,
– λij ∈ Λ, (i, j) ∈ D,
– the criterion (4) Fg(λ) has minimal value.

Note, that to describe the CSS theory and to formulate some synthesis problem
we have done some simplifications and these simplifications are not essential in our
case.

The algorithm for a stated synthesis problem
Step 1. By using the adaptive random search algorithm the values of vector

λ∗ ∈ Λ: λ12 < λ13 < . . . < λ1,z−1 are randomly selected (i.e the optimization for
a continuous variable is being done).

Step 2. By using the formula

λij = λi1λ1j =
λ1j

λ1i
, i, j ∈ 2 : (z − 1),

for all arcs of complete graph Γz on |Z| nodes, the values of functional elements
of are calculated.

Step 3. By using the penalty function (7) and the vector λ∗ all arcs of complete
graph on |Z| nodes are weighed.

Step 4. By using any greedy algorithm for minimal spanning tree (MST)
finding (i.e. the algorithm of Kruskals or the Prim’s algorithm) the MST T of
graph Γz is formed (i.e the optimization for discrete variable is being done).

Step 5. The value of the objective function

F (λ) = Fg(λ) + Φλ

for the vector λ∗ is calculated (this value is necessary need for the adaptive random
search).

Step 6. Algorithm is completed if the current iteration of the random search
is equal to nstep, where nstep is the parameter of random search

Algorithm application results

Let us apply the described algorithm to the solution of the following CSS
synthesis problem [5].

Synthesis problem.
Given:
– the output gamma: G = 〈0.30, 0.52, 0.65, 0.85, 1.05, 2.10, 3.00, 4.00, 4.60, 5.00〉,
– left and right bounds [gli, gri] for gi:

[0.25,0.35],[0.40,0.58],[0.60,0.70],[0.80,0.90],[1.00,1.10],
[1.80,2.50],[2.80,3.20],[3.90,4.10],[4.50,4.70],[4.90,5.10];
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– the domain of functional elements parameter: Λ = [0.4166, 0.833]∪ [1.2, 2.40].
The obtained values of output functions:

λ1 11 = 0.299, λ12 = 0.519,
λ13 = 0.649, λ14 = 0.849,
λ15 = 1.049, λ16 = 2.100,
λ17 = 3.005, λ18 = 3.948,
λ19 = 4.588, λ1 10 = 4.953.

The values of the functional elements parameter:

λ21 = 1.924, λ52 = 2.017,
λ65 = 2.003, λ86 = 1.879,
λ11 2 = 1.733, λ31 = 1.541,
λ42 = 1.635, λ96 = 2.184,
λ79 = 1.527, λ10 7 = 1.648,

The obtained functional graph of the synthesis problem is shown on the fig. 1.

Figure 1: The given functional graph of the synthesis problem.

The time for the synthesis problem solution by using the computer with CPU
Pentium-III is equal to 0.3 seconds.

Another way to solve the above-mentioned synthesis problem could contain the
following stages:

1. All spanning trees of the complete graph Γz are formed (”discrete stage”).
2. For every spanning tree the optimal vector λ is found (”continuous stage”).
Thus it is obvious that our algorithm of mixed discrete-continuous optimiza-

tion is more effective because the discrete and continuous stages of the synthesis
problem are simultaneously solved. We don’t need to form all spanning trees of
graph Γz. Note the using of adaptive random search in this case is very important.

Conclusion

In future we plan to use the approach for solving some synthesis problems of
three-pole CSS, where the hypergraph theory [2,3,4] is being used. We are also
going to find another application for a proposed approach.
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